e

A Comparison of Three High-Precision Quadrature Schemes

David H. Bailey
Lawrence Berkeley National Laboratory
Berkeley, CA, USA 94720

dhbailey@lbl.gov

Xiaoye S. Li
Lawrence Berkeley National Laboratory, Berkeley

Berkeley, CA, USA 94720
xs11@lbl.gov

Experimental Math Workshop, March 29-30, 2004




Ly

QOutline

e History and motivation
e ARPREC — a new freely available arbitrary precision package
e Three high precision quadrature schemes

Gaussian, Error function, Tanh-sinh

e Comparison results

Page 2



e

History of numerical quadrature

e 1670: Newton devises what is now known as Newton-Coates integration.
e 1740: Thomas Simpson develops Simpson's rule.
e 1820: Gauss develops Gaussian quadrature.

e 1900s: Adaptive quadrature, Romberg integration, Clenshaw-Curtis
integration, others.

e 1990: Maple and Mathematica feature built-in numerical quadrature schemes.

Almost all published works focus on obtaining results accurate to 15 digits or less,
the limit of present-day IEEE “double” arithmetic.

Page 3



Ly

Why high precision quadrature?

e Recognize an unknown definite integral in analytic terms, using high-precision
quadrature and PSLQ integer relation detection.

Example [Jon Borwein, Greg Fee and D.H. Bailey]

It
Cla) = [ arctan(vx? + a?) dx
0 Ve (2 1)
then

C(0) = wlog2/8+ G /2
C(1) = 7/4 — 7v2/2 + 3v2arctan(v/2) /2
C(V2) = 57%/96
where G is Catalan’s constant (the third result appeared in the MAA

Monthly, Aug/Sept 2002). These particular results have now led to several
general results, including:

IS arctan(vz? +a?)dr 7r
O Vet a2(x2+1) 2va? -1

l2 arctan(va? — 1) — arctan(vVa* — 1)]




Ly

Why high precision quadrature?

e Identification of infinite series

Recently Borwein and Roland Girgensohn of Zentrum Mathematik in Germany
were able to derive an analytic representation for sums of the form

k
n
Y
nk
bS(k) — ngl (37;1)271

by transforming them into the integral expressions
ba(k) = Sck(2) [/[l —2(1 — 2)] 7 do
J
bs(k) = Sci(3) [j[1 —2*(1 — z)] 7 da
J

where the ¢ function involves certain combinatorial values. They then identified
these two integrals by using a high-precision quadrature routine, similar to
those described here, combined with an integer relation detection facility.

Page 5



Ly

Why not Maple and Mathematica?

The integrals

L= [ t2In(t) dt
0 (@2 — 1)t + 1)
t2 dt
I, — /4
2 /0 SiDQ(t)
T sin x dx
I, = [T
] /0 1 +cos?zx

are successfully evaluated by Maple and Mathematica, but the results are lengthy

expressions involving advanced functions and complex entities (in one case, over
100 lines long!).

Using the techniques in this paper, we were able to determine that:
L = 7%(2—2)/32
I = —7°/16+71In(2)/4 + G
13 = 7T2/4,

Page 6



Ly

High precision quadrature facility

Goals

e Given only the function definition in a user program

e No a priori knowledge of the specific function to be integrated

e No bounds on the magnitude of the function or any of its derivatives
e Does not rely on symbolic manipulation

e Suitable for parallel implementation
Three schemes in consideration

e Gaussian quadrature
e Error function quadrature

e Tanh-sinh quadrature

| ast two based on the Euler-Maclaurin Summation Formula

Page 7



gy
Frreerrer ‘{ﬂ

The arbitrary precision (ARPREC) package

e Improved upon Bailey's MPFUN.
e Implemented in C++ for high performance and broad portability; thread-safe.

e Fortran-90 modules that permit Fortran-90 programs to utilize the package
with only very minor changes to source code.

e Arbitrary precision integer, floating and complex datatypes, and dynamically
changing precision.

e Support for datatypes with differing precision levels.

e Inter-operability with conventional integer and floating-point datatypes.
e Common transcendental functions (sqrt, exp, sin, erf, etc).

e Quadrature routines (for numerical integration).

e PSLQ routines (for integer relation detection).

e Special routines for extra-high precision (> 1000 digits) computation.
Experimental Mathematician’s Toolkit:

e An interactive utility incorporating the above facilities.

Page 8



Ly

More on ARPREC implementation

e An n-"digits" number A is represented in an array of (n + 5)-long words
(ak,l <k §n+5):
—ap . array size
— a9 : number of mantissa words, with sign
— a3 : exponent
— (a4 : apy3) : mantissa words
— Qyt4, Qs - 2 scratch words for rounding purpose

A = :I:(a45a3 + a56a3_1 I an+35a3—n+1)
e Exploit IEEE 64-bit FP word: use 48 bits for a;, so 8 = 2%, a; € [0,2%)

e Multiplication employs double X double arithmetic for each component
Can do 32 rows of mults before releasing carries (32 = 2°,5 + 48 = 53)

e Taylor series for transcendental functions, with proper argument reduction
e FFT-based multiplication for extra-high precision numbers

e Some routines (e.g., sqrt) use Newton algorithm
e 30-40% faster than MPFUN for low level arithmetics

Page 9



g
Frreerrer ‘I}W

Gaussian quadrature

An integral on [—1,1] is approximated as the sum
1 n
[ flx)dex ~ jgowjf(xj)
® abscissas x; are roots of the n-th degree Legendre polynomial P,(z) on |—1,1]

-2
n+1)P7’Z(:Bj)Pn+1(£IJj)

e weights w,; = (

How are they computed?

e abscissas z; are computed using a Newton iteration scheme, with starting
value cos[m(5 — 1/4)/(n + 1/2)] [G. Rybicki].

e P,(x) is computed using an n-long iteration of the recurrence
(k+1)Pyy1(x) = 2k + 1) xPy(x) — kPy_1(x), for k > 2,
with Py(z) =0, Pi(z) = 1.
e P/(x) is computed as

P(z) = n(zPy(z) — Po-i(2))/(2” = 1)

Drawback: cost increases quadratically with n

Page 10



Ly

High precision implementation

Multiple “levels” (phases) are employed ... Starting with ny = 3, and with
ni = 2 -nk_1, up to level m. Total n =5} ;3 - 2k ~6.2m
(we set m = 9 in the experiments.)

e [nitialization
The Newton iteration for x; is accelerated by using a dynamic level of
precision: start with 64-bit, roughly doubles the precision for each level up.

e Integral evaluation
Start with the first level, continue with additional levels but evaluate function

only at the odd-indexed abscissas, until:

— either exhaust the set of pre-computed abscissas and weights,

— or accuracy satisfied.

Page 11



e

The Euler-Maclaurin formula

Let h = (b—a)/n and x; =a + jh. Then

m hQiBgz'

1) de = 1S, Fep)=3 (Fla)+ 16)= B TG (00 = /o) -

The error term E is smaller than h?"™1/(2m + 2)! times a constant (certain
definite integral that is independent of n and h.)

Special cases

e f(x) and all of its derivatives are zero at a and b. (e.g., a smooth, bell-shaped
function)

b n—1
[ f(@)do=h'S flay) - B
That is, in a simple step-function approximation, error goes to zero more
rapidly than any power of h, as h is decreased.

e Infinite interval, where f(z) and all its derivatives tend to zero for large ||,
the E-M formula also applicable

[ f@yde=h 5 flz;)—E

Page 12



Ly

Error function and tanh-sinh quadratures

In E-M, change of variable z = g(¢), g(t) is a monotonic function satisfying:
e ¢'(t) and higher derivatives approach to zero for large |¢|.

Then, for h > 0, we have
00 N / ) .
[ flx)dz = [% f(g(t)g(t)dt ~ h 2 w;f(z;), where ,w; = g'(hj),z; = hj

1. Error function quadrature
o g(t) = erf(t) = (2/y/m) e ™ dz € (—1,1),
o J'(t)=2/\/m- et like probability density function

For many f(x) € C*(—1,1), the integrand f(g(t))g'(t) is a nice bell-shaped
curve for which the E-M formula applies.

2. Tanh-sinh quadrature
e g(t) = tanh(mw /2 -sinht) € (—1,1),
e ¢'(t) = m/2 - sinht/ cosh?(7/2 - sinh t)

Page 13



Ly

Convergence and error estimation

e For bounded and well behaved functions on a finite closed interval, all three
quadrature schemes exhibit quadratic convergence: after a few initial levels,
subsequent levels produce approximations about twice the number of correct
digits as the previous level.

e Error estimation attempts to predict the error of the current iteration based on
the error improvement from the previous two iterations. The following works
well in practice:

Let S}, be the computed integral for levels k to n, then the estimated error E
at level [ is given by
1 it [ <2
E, =30 or S;=.5_4
10¢  otherwise
where, d = min[0, max(d?/ds, 2d1, d3)],
dy = logy |Sl — Sl—l‘a
dy = logyo |51 — Si—2|,
d3 = logyg e - MaX;level (@)l
£ = "“machine epsilon” of the multiprecision system.

Page 14



Ly

Experiments

e User working precision set to 400 digits

e Target accuracy set to 107°%

e 9 levels of abscissas and weights pre-computed
e Termination criteria

— case 1: maximum level (9) is reached, or
— case 2: estimated error E; achieved target accuracy, or

— case 3: magnitude of the function near an endpoint is too large, so the
summands are not sufficiently small to ensure full accuracy
(higher numeric precision is required)

Page 15



Ly

Test problems

Set 1. Well-behaved continuous functions on finite itervals:
1 1

l: /0 tlog(l+t)dt = 1/4 2: /0 t*arctantdt = (m — 2+ 2log2)/12

1 arctan(v/2 + t?) P

O 1+2)VvV2+2

Set 2. Continuous functions on finite itervals, but with a vertical derivative at an endpoint:

5: /le/flogtdt = —4/9 6 : /()1\/1—t2dt = /4

Set 3. Functions on finite intervals with an integrable singularity at an endpoint:

3: [Pecostdt = (€77 —1)/2 572 /96

7/0 St = 1 8: ['logt?dt =

9: /0 log( cost)dt —mlog(2)/2 10 : OW/Q\/tantdt = T2/2

Set 4. Functions on an infinite interval:

00 oo €
A 1+t2dt:7r/2 12: [ Wdt:\/%
13: [T tldt = \[n/2
Set 5. Oscillatory functions on an infinite interval:
sint
14: [Tetcostdt = 1/2 15 - Omidt /2

Page 16



Performance of quadrature routines

Ly

QUADGS QUADERF QUADTS

Prob. | Level Time | Error || Level| Time|Error | Level| Time|Error
Init|] 9 |2778.29 9 |131.80 9 |45.46

1| 6 8.72(1074%| 9 | 574310746} 7 113.69|1073%
2| 6 8.86 10749 | 9 | 36.17|107%%6| 8 |21.86 107406
3] 5 4161074 | 9 | 44.06/107%05) 7 |12.01|107405
4] 6 8.78/1074% | 9 | 9248107406 | g |38.43|10 406
5] 9 78.00 10~ | 9 | 68.15|107*¢| 7 ]16.08|1074%
6| 9 3.65[1072 | 9 3.94 107496 | 7 | 0.90|1073%2
71 9 439104 8 2391072190 6 | 0.55|10~1
8| 9 75.84 1076 9 | 6558107405 7 |15.29|10—4%0
9| 9 99.83 |10~ 9 | 69.96(107403| 7 [17.97|1073%
10| 9 3168|1074 8 749110729 6 | 236|107 19

11| 7 06110742 | 9 3.0 107%*| 9 | 2590
12| 9 4755|107 9 | 18.88|/10°12| 9 [26.09 10203
13| 9 4174110733 9 | 11.30(107°Y | 9 [17.97|10~%*!
14 9 7169107126 9 | 26.87/107%® | 9 [44.39]10 16
15| 5/9 | 3445107 | 9/9 | 41.14|107'" | 7/9 |31.66 10~

Page 17



Ly

Summary

e For well-behaved continuous functions on finite intervals, Gaussian quadrature
is clearly the most efficient.

— For Set 1, it is 10x faster than Error function, and 4-5x faster than Tanh-sinh

e When the function has a “blow-up” singularity or vertical derivative at an
endpoint, Gaussian quadrature fails.

e A major drawback of Gaussian quadrature is very long initialization time,
growing as n?, where n is the number of grid points.

e Error function quadrature performs very well, even in cases where the function
is not well behaved at endpoints.

e Tanh-sinh quadrature also performs well when the function is not well behaved,
and has the lowest overall run times.

e For problems 7 & 10, both error function and tanh-sinh quadratures stopped
because of case 3 termination criterion.

Page 18



Ly

Future work

e Parallelization on SMP, fairly straightforward

e Extend to 2D and 3D quadratures, also amenable to parallel computing

Page 19



